Addition

Objective and
Strategies

Combining two
parts to make
a whole: part-
Whole model

	Counting on using large and small number tracks.		smaller number to find your answer.
Regrouping to make 10.	$6+5=11$ Start with the bigger number and use the smaller number to make 10.	Use pictures or a number line. Regroup or partition the smaller number to make 10.	$7+4=11$ If I am at seven, how many more do I need to make 10. How many more do I add on now?
Adding three single digits	$4+7+6=17$ Put 4 and 6 together to make 10. Add on 7. Following on from making 10, make 10 with 2 of the digits (if possible) then add on the third digit.	Add together three groups of objects. Draw a picture to recombine the groups to make 10.	$\begin{aligned} (4)+7+6 & =10+7 \\ & =17 \end{aligned}$ Combine the two numbers that make 10 and then add on the remainder.

	This can also be done with Base 10 to help children clearly see that 10 ones equal 1 ten and 10 tens equal 100. As children move on to decimals, money and decimal place value counters can be used to support learning.	to make each number in the calculation have the same number of decimal places.	

Objective and Strategies	Concrete	Pictorial	Abstract
Taking away ones	Use physical objects, counters, cubes, buckets and Numicon etc to show how objects can be taken away. $6-2=4$	Cross out drawn objects to show what has been taken away. $15-3=12$	$\begin{aligned} & 18-3=15 \\ & 8-2=6 \end{aligned}$
Counting back	Make the larger number in your subtraction. Move the beads along your bead string as you count backwards in ones. Use counters and move them away from the group as you take them away counting backwards as you go.	Count back on a vertical and horizontal number line or number track Start at the bigger number and count back the smaller number showing the jumps on the number line. This can progress all the way to counting back using two 2 digit numbers.	Put 13 in your head, count back 4. What number are you at? Use your fingers to help.

Find the difference	Compare amounts and objects to find the difference. Use cubes to build towers or make bars to find the difference Use basic bar models with items to find the difference	Count on to find the difference. Comparison Bar Models Draw bars to find the difference between 2 numbers. Lisa is 13 years old. Her sister is 22 years old Find the difference in age between them.	Hannah has 23 sandwiches, Helen has 15 sandwiches. Find the difference between the number of sandwiches.
Part Part Whole Model	Link to addition- use the part whole model to help explain the inverse between addition and subtraction. If 10 is the whole and 6 is one of the parts. What is the other part? $10-6=$	Use a pictorial representation of objects to show the part part whole model.	5 10 Move to using numbers within the part whole model.

Make 10	Make 14 on the ten frame. Take away the four first to make 10 and then takeaway one more so you have taken away 5 . You are left with the answer of 9.	Start at 13. Take away 3 to reach 10 . Then take away the remaining 4 so you have taken away 7 altogether. You have reached your answer.	$16-8=$ How many do we take off to reach the next 10 ? How many do we have left to take off?
Subtraction using a numberline.		$78-19=$ Start with the lowest number on the left of the line. Count in tens until the nearest ten below the target number of 78. (E.G. 19, 29, 39, 49, 59, $69=5$ tens $=$ 50). Count in ones until you reach your target number (E.G. $6=70,71,72,73,74,75,76,77,78=9$). Add both numbers together $=50+9=59$. Leading to:	Leading to mental methods of using a numberline for subtraction of numbers found close together on the numberline. $\text { EG: } 205-196=9$

Column method without regrouping	Use Base 10 to make the bigger number then take the smaller number away. Show how you partition numbers to subtract. Again make the larger number first.		$\begin{gathered} 47-24=23 \\ -40+7 \\ -20+4 \\ \hline 20+3 \\ \hline \end{gathered}$ This will lead to a clear written column subtraction. $\begin{array}{r} 32 \\ -12 \\ \hline 20 \end{array}$
Column method with regrouping	Use Base 10. Start with one exchange before moving onto subtractions with 2 exchanges. Make the larger number with the base Start with the ones, can I take away 8 from 4 easily? I need to exchange one of my tens for ten ones.	Draw the base 10 onto a place value grid and show what you have taken away by crossing the counters out as well as clearly showing the exchanges you make. When confident, children can find their own way to record the exchange/regrouping. Just writing the numbers as shown here shows that the child understands the method and knows when to exchange/regroup.	Children can start their formal written method by partitioning the number into clear place value columns. $\begin{array}{ccc} 728 & -582=146 \\ { }^{H} & { }^{\top} & u \\ { }^{\prime} 7 & 2 & 8 \\ 5 & 8 & 2 \\ \hline 1 & 4 & 6 \\ \hline \end{array}$ Moving forward the children use a more compact method.

Multiplication

Objective and Strategies	Concrete	Pictorial	Abstract
Doubling		Draw pictures to show how to double a number. Double 4 is 8 \square \square \square \square \square \square \square	Partition a number and then double each part before recombining it back together.
Counting in multiples	Count in multiples supported by concrete objects in equal groups. Carry out songs and action songs. Also use Numicon tiles. Count in multiples on number tracsk and number lines.	Use a number line or pictures to continue support in counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples of numbers. $\begin{aligned} & 2,4,6,8,10 \\ & 5,10,15,20,25,30 \end{aligned}$

Repeated addition	Use different objects to add equal groups．	There are 3 plates．Each plate has 2 star biscuits on．How many biscuits are there？ 2 add 2 add 2 equals 6 $5+5+5=15$ What number sentence／problem does this calculation show？	Write addition sentences to describe objects and pictures．
Arrays－ showing commutative multiplication	Create arrays using counters／cubes to show multiplication sentences． How can we arrange these cubes in an array？Is there more than one way to do this？	Draw arrays in different rotations to find commutative multiplication sentences． $\begin{aligned} & 0000^{4 \times 2=8} \\ & 0000 \\ & 2 \times 4-8 \\ & 00^{2 \times 4=8} \\ & 00 \\ & 00 \\ & 00 \\ & 4 \times 2=8 \end{aligned}$ Link arrays to area of rectangles．	Use an array to write multiplication sentences and reinforce repeated addition． $\begin{aligned} & 5+5+5=15 \\ & 3+3+3+3+3=15 \\ & 5 \times 3=15 \\ & 3 \times 5=15 \end{aligned}$

Column multiplication		(To be taught after abstract method in the right hand column). Bar modelling and number lines can support learners when solving problems with multiplication alongside the formal written methods.	1) $T U \times U$ E.G: 45 $\frac{\times 3}{135}$ $\frac{11}{11}$ 2) HTU $x U$ and THTU x U E.G: 463 $\frac{25}{\frac{2315}{231}}$ 3) TU.t $x U$ and TU.th $\times \mathrm{U}$ (including money and measures) E.G: £53.24 $\begin{array}{r} \times \quad 4.00 \\ \hline \frac{£ 212.96}{21} 1 \end{array}$ 4) $T U x T U$ (teens) Start with long multiplication, reminding the children about lining up their numbers clearly in columns. If it helps, children can write out what they are solving next to their answer. (See following page for details.)

			$\begin{array}{r} 32 \\ \times 14 \\ 8(4 \times 2) \\ 120(4 \times 30) \\ 20(10 \times 2) \\ +300(10 \times 30) \\ \hline 448 \end{array}$ This moves to the more compact method. $\begin{array}{r} 32 \\ \times 14 \\ 128(\times 4) \\ +\underline{320}(\times 10) \\ \underline{448} \end{array}$ 5) TU x TU (E.G. 32×24) 6) $\mathrm{HTU} \times \mathrm{TU}$ 7) $\mathrm{THTU} x \mathrm{TU}$

Division

Objective and Strategies	Concrete	Pictorial	Abstract
Sharing objects into groups	I have 10 cubes, can you share them equally in 2 groups?	Children use pictures or shapes to share quantities. $8 \div 2=4$	Share 9 buns between three people. $9 \div 3=3$
Division as grouping	Divide quantities into equal groups. Use cubes, counters or objects to aid understanding. $96 \div 3=32$ ㅁ $12 \div 3=4$	Bar modelling (Teach AFTER abstract and concrete). Think of the bar as a whole. Split it into the number of groups you are dividing by and work out how many would be within each group. $\begin{aligned} & 20 \div 5=? \\ & 5 \times ?=20 \end{aligned}$	$28 \div 7=4$ Divide 28 into 7 groups. How many are in each group?

Division within arrays	Link division to multiplication by creating an array and thinking about the number sentences that can be created. $\begin{array}{rr} \text { Eg } 15 \div 3=5 & 5 \times 3=15 \\ 15 \div 5=3 & 3 \times 5=15 \end{array}$	Draw an array and use lines to split the array into groups to make multiplication and division sentences.	Find the inverse of multiplication and division sentences by creating four linking number sentences. $\begin{aligned} & 7 \times 4=28 \\ & 4 \times 7=28 \\ & 28 \div 7=4 \\ & 28 \div 4=7 \end{aligned}$
Division with a remainder	$14 \div 3=$ Divide objects between groups and see how much is left over (e.g. toys or pasta).	Jump forward in equal jumps on a number line then see how many more you need to jump to find a remainder. Draw dots and group them to divide an amount and clearly show a remainder. (((8) (remainder 2	Complete written divisions and show the remainder using r . Note: Pupils need to learn the vocabulary 'dividend', 'divisor', 'quotient' and 'remainder' as they move through school.

cort division			Begin with divisions that divide equally with no remainder. Move onto divisions with a remainder. Convert the remainder to a fraction and then a decimal: $\text { E.G: } \begin{aligned} 432 \div 5 & =86 \times 2 \\ & =862 / 5 \\ & =86.4 \end{aligned}$ Finally move into decimal places to divide the total accurately.

Long division			Once pupils are confident with using short division, introduce long division for use with dividing larger numbers by two-digit numbers. $\begin{aligned} & \text { E.G: } 6843 \div 15= \\ & \begin{array}{rl} 45 \quad 5 \quad 6 & r 3 \\ 684 & 3 \\ -\frac{60}{8} \frac{\downarrow}{4} \\ -\frac{75}{9} & 3 \\ -\frac{90}{3} \end{array} \\ & \begin{aligned} =6843 \div 15 & =456 \mathrm{r} 3 \\ & =4563 / 15 \\ & =4561 / 5 \\ & =456.2 \end{aligned} \end{aligned}$ (Numbers in red $=$ $15 \times 4=60$ (nearest 'full 15' to 68); $15 \times 5=75$ (nearest 'full 15' to 84); $15 \times 6=90$ (nearest 'full 15' to 93). There is a remainder of 3 because we cannot get any 'full 15's' out of 3 therefore this becomes the remainder.

